

together we advance_

DSP-HLS (v1.0)

Course Description

This course provides a thorough introduction to high-level synthesis (HLS) using the AMD Vitis™ Unified IDE.

The focus of this course is on:

- Converting C/C++ designs into RTL implementations
- Learning the HLS component development flow
- Creating I/O interfaces for designs
- Applying different optimization techniques to designs
- Improving throughput, area, latency, and logic by using different HLS pragmas/directives
- Exporting IP that can be used with the Vivado™ IP catalog
- Migrating designs from the classic Vitis HLS tool to the Vitis Unified IDE

What's New for 2024.2

- Vitis HLS Libraries module: Added information on new featured libraries: Direct I/O, Fence, and DSP Intrinsics
- All labs have been updated to the latest software versions

Level - DSP 3

Course Details

2 days ILT/ 3 sessions

Course Part Number - DSP-HLS

Who Should Attend? – Software and hardware engineers looking to utilize high-level synthesis

Prerequisites

- C or C++ knowledge
- Basic RTL design flow knowledge

Software Tools

- Vitis Unified IDE 2024.2
- Vivado Design Suite 2024.2
- Vitis HLS tool 2024.2

Hardware

- Architecture: Zynq™ UltraScale+™ MPSoC and Versal™ Al Core series
- Demo board: Zynq UltraScale+ MPSoC ZCU104 board*
- * Check with your local Authorized Training Provider for the specifics of the in-class lab board or other customizations.

After completing this comprehensive training, you will have the necessary skills to:

- Enhance productivity by using the AMD Vitis Unified IDE for HLS component development
- Describe the HLS component development flow
- Use the Vitis Unified IDE to create an HLS component
- Identify common coding pitfalls as well as methods for improving RTI /hardware code
- Use directives/pragmas to improve throughput, area, latency, and logic and to select RTL interfaces
- Perform system-level integration of IP generated by the Vitis Unified IDE
- Migrate designs from the classic Vitis HLS tool to the Vitis Unified IDE

Course Outline

Day 1

High-Level Synthesis with the Vitis Unified IDE

Course Specification

Introduction to High-Level Synthesis

Provides an overview of high-level synthesis (HLS), the Vitis Unified IDE for HLS flow, and the verification advantage. {Lecture}

HLS Component Development Flow

Explores the HLS component development flow in the Vitis Unified IDE. {Lecture, Lab}

Abstract Parallel Programming Model for HLS

Describes the structuring of a design at a high level using an abstract parallel programming model. {Lecture}

Design Exploration with Directives

Explores different optimization techniques that can improve design performance. {Lecture}

HLS Component Development Using the Command Line

Describes the unified command line interface and the the v++ and vitis-run commands. {Lecture, Lab}

Introduction to Vitis HLS Design Methodology

Introduces the methodology guidelines covered in this course and the HLS Design Methodology steps. {Lecture}

Introduction to I/O Interfaces

Explains interfaces such as the block-level and port-level protocols abstracted by Vitis HLS from a C design. {Lecture}

Block-Level Protocols

Explains the different types of block-level protocols abstracted by Vitis HLS. {Lecture, Lab}

Port-Level I/O Protocols

Describes the port-level interface protocols abstracted by Vitis HLS from a C design. {Lecture, Labs}

AXI Adapter Interface Protocols

Explains the different AXI interfaces (such as AXI4-Master, AXI4-Lite (Slave), and AXI4-Stream) supported by Vitis HLS. {Lecture}

Vitis HLS Code Analyzer

Provides an overview of the Vitis Code Analyzer, its features, and how to view generated reports. {Lecture, Lab}

Day 2

Optimizing for Performance: PIPELINE

Describes the PIPELINE directive for improving the throughput of a design. {Lecture, Lab}

Optimizing for Performance: DATAFLOW

Describes the DATAFLOW directive for improving the throughput of a design by pipelining the functions to execute as soon as possible. {Lecture, Lab}

Optimizing for Throughput

Describes the performance limitations caused by arrays in a design. Also explores optimization techniques to handle arrays for improving performance. {Lecture, Lab}

Optimizing for Latency: Default Behavior

Describes the default behavior of Vitis HLS on latency and throughput. {Lecture}

Optimizing for Latency: Reducing Latency

Describes how to optimize the C design to improve latency. {Lecture} $\;$

Optimizing for Area and Logic

Describes different methods for improving resource utilization and explains how some of the directives have impact on the area utilization. {Lecture, Lab}

© Copyright 2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, UltraScale+, Versal, Vitis, Vivado, Zynq, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective owners.

High-Level Synthesis with the Vitis Unified IDE

DSP-HLS (v1.0)

Course Specification

Optimizing AXI System Performance

Describes AXI burst transfers and their types. Also outlines the optimization steps to improve system performance. {Lecture}

Vitis HLS Libraries

Describes the library support offered by Vitis HLS. {Lecture}

Vitis HLS Libraries: Arbitrary Precision Data Types Describes Vitis HLS support for the C/C++ languages as well as arbitrary precision data types. {Lecture, Lab}

Using Pointers in Vitis HLS

Explains the use of pointers in a design and workarounds for some of the limitations. {Lecture}

HLS Component Design Flow – System Integration Illustrates the process of developing and exporting an HLS component as Vivado IP. {Lab}

Migrating to the Vitis Unified IDE – HLS Component Describes the need for the Vitis Unified IDE and identifies different approaches for migrating projects from the classic Vitis HLS tool to the Vitis Unified IDE. {Lecture, Lab}