

Designing with Dynamic Function eXchange (DFX) Using the Vivado Design Suite

FPGA 4

FPGA-DFX (v1.0)

Course Description

Learn how to construct, implement, and download a Dynamic Function eXchange (DFX) FPGA design using the Vivado® Design Suite. This course covers both the tool flow and mechanics of successfully creating a DFX design.

The emphasis of this course is on:

- Identifying best design practices and understanding the subtleties of the DFX design flow
- Using the DFX Controller and DFX Decoupler IP in the DFX process
- Implementing DFX in an embedded system environment
- Applying appropriate debugging techniques on DFX designs
- Employing best practice coding styles for a DFX system

What's New for 2021.2

- DFX Design Considerations for Versal Devices: New module
- DFX Block Design Containers in IP Integrator: New module and lab
- All labs have been updated to the latest software versions

Level - FPGA 4

Course Details

- 2 days ILT
- 19 lectures
- 9 lahs
- 2 demos (ILT only)

Price -

Course Part Number - FPGA-DFX

Who Should Attend? – Digital designers who have a working knowledge of HDL (VHDL or Verilog) and the Xilinx design methodology and who have need to understand Dynamic Function eXchange techniques

Prerequisites

- Designing FPGAs with the Vivado Design Suite 2 course
- Designing FPGAs with the Vivado Design Suite 3 course
- Designing FPGAs with the Vivado Design Suite 4 course
- Working HDL knowledge (VHDL or Verilog)

Software Tools

- Vivado Design Suite 2021.2
- Vitis™ unified software platform 2021.2

Hardware

- Demo board: Zyng® UltraScale+™ MPSoC ZCU104 board*
- * Check with your local Authorized Training Provider for the specifics of the in-class lab board or other customizations.

After completing this comprehensive training, you will have the necessary skills to:

- Describe what Dynamic Function eXchange is
- Define DFX regions and reconfigurable modules with the Vivado Design Suite
- Generate the appropriate full and partial bitstreams for a DFX design
- Implement a nested DFX design
- Use the ICAP and PCAP components to deliver the partially reconfigurable systems
- Implement a DFX system using the DFX Controller IP

Course Specification

- Use the block design container feature of Vivado IP integrator to create a DFX design
- Identify how Dynamic Function eXchange affects various silicon resources, including block RAM, IOBs, fabric, and MGTs
- Implement a Dynamic Function eXchange system using the following techniques:
 - Direct JTAG connection, floorplanning, and timing constraints and analysis
- Debug a DFX design using the Vivado Design Suite
- Implement a DFX system in an embedded environment using the Vitis IDF

Course Outline

Day 1

Basics of DFX

Introduction to Dynamic Function eXchange (DFX)

Explains what Dynamic Function eXchange is and defines the terminologies used in DFX. Also provides an overview of the configuration and reconfiguration processes. {Lecture, Demo}

DFX Tool Flow

DFX Flow Using the Vivado Design Suite GUI

Illustrates the steps for creating a DFX project in the Vivado Design Suite and describes various supported and unsupported features. {Lecture, Lab}

DFX Flow Using Vivado Design Suite Tcl Commands

Reviews the flow using non-project-based commands, including using implementation constraints and specific characteristics. {Lecture, Lab}

Nested DFX

Describes using nested DFX, the process by which a Reconfigurable Partition (RP) can be segmented into smaller regions, each of which is partially reconfigurable. {Lecture, Lab}

Abstract Shell for Dynamic Function eXchange

Describes how compilation time can be reduced by using an Abstract shell (UltraScale+ devices only). {Lecture}

DFX Design Considerations for Xilinx Devices

■ DFX Design Considerations for All Xilinx Devices

Covers the requirements, characteristics, and limitations associated with DFX designs that can simplify the debug process and reduce the risk of design malfunctions. {Lecture}

 DFX Design Considerations for 7 Series, Zynq SoC, UltraScale, and UltraScale+ Devices

Discusses DFX design consideration methodologies for various Xilinx device families. {Lecture}

DFX Design Considerations for Versal Devices

Describes the DFX design requirements that are specific to Versal devices. {Lecture}

DFX Design-Specific IP Blocks

■ DFX Intellectual Property (IP)

Reviews the various IPs that are specifically for use with DFX designs. {Lecture, Lab, Demo}

DFX Block Design Containers in IP Integrator

Describes the block design container feature and how BDCs enable DFX. {Lecture, Lab}

© 2022 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

Designing with Dynamic Function eXchange (DFX) Using the Vivado Design Suite

FPGA 4

FPGA-DFX (v1.0)

Course Specification

Day 2

DFX Configuration

Configuring Devices Using DFX

Reviews the basics of configuration and various configuration modes. {Lecture}

Configuration Parameters

Covers various configuration parameters, including factors that affect configuration time and configuration debugging. {Lecture}

DFX Bitstreams

Describes the different types of bitstreams for DFX compilation, including full, partial, blanking, and clearing. {Lecture}

DFX Bitstream Integrity

Describes partial bit file integrity and implementing DFX through the ICAP for FPGA devices. {Lecture}

DFX Design Analysis and Debugging

Floorplanning a DFX Design

Demonstrates how to create Pblocks for various devices and how to create a floorplan for a reconfigurable region. {Lecture, Lab}

■ DFX Timing Analysis and Constraints

Illustrates how and when to apply different constraint files, the process of performing a DFX timing-level simulation, and the process of performing static timing analysis on a DFX design. {Lecture, Lab}

DFX Debugging

Illustrates DFX debugging techniques using Vivado Design Suite debug cores. {Lecture, Lab}

DFX Designs in Embedded Systems

DFX in Embedded Systems

Describes the embedded design flow in the Vivado Design Suite, the advantages of using a processor with DFX, and how to connect a processor to the PCAP to control DFX using the Vitis IDE. {Lecture, Lab}

DFX Designs Using the PCle Core

Reviews the advantages of using a PCIe core in a DFX design. {Lecture}

Register Today

Visit the Xilinx Customer Training Center to view schedules and register online.