
© 2021 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DSP Design Using System Generator

DSP 3

DSP-SYSGEN (v1.0) Course Specification

DSP-SYSGEN (v1.0) updated June 2021 www.xilinx.com
Course Specification 1-800-255-7778

Course Description
Explore the Model Composer and System Generator tool and gain the
expertise needed to develop advanced, low-cost DSP designs.

This course focuses on:

▪ Implementing DSP functions using System Generator for DSP

▪ Utilizing design implementation tools

▪ Verifying through hardware co-simulation

What's New for 2020.2

▪ Added Vitis™ HLS tool support for System Generator integration

Level – DSP 3

Course Duration – 2 days

Price –

Course Part Number – DSP-SYSGEN

Who Should Attend? – System engineers, system designers, logic
designers, and experienced hardware engineers who are implementing
DSP algorithms using the MathWorks MATLAB® and Simulink®
software and want to use Xilinx System Generator for DSP design

Prerequisites

▪ Experience with the MATLAB and Simulink software

▪ Basic understanding of sampling theory

Software Tools

▪ Vivado® Design Suite System Edition 2020.2

▪ Model Composer and System Generator

▪ Vitis HLS tool 2020.2

▪ Vitis unified software platform 2020.2

▪ MATLAB with Simulink software R2020b

Hardware

▪ Architecture: 7 series and UltraScale™ FPGAs

▪ Demo board: Kintex® UltraScale™ FPGA KCU105 board and
Zynq® UltraScale+™ MPSoC ZCU104 board*

* Check with your local Authorized Training Provider for the specifics of
the in-class lab board or other customizations. The ZCU104 board is
required for the "AXI4-Lite Interface Synthesis" lab.

After completing this comprehensive training, you will have the
necessary skills to:

▪ Describe the System Generator design flow for implementing
DSP functions

▪ Identify Xilinx FPGA capabilities and how to implement a design
from algorithm concept to hardware simulation

▪ List various low-level and high-level functional blocks available in
System Generator

▪ Run hardware co-simulation

▪ Identify the high-level blocks available for FIR and FFT designs

▪ Implement multi-rate systems in System Generator

▪ Integrate System Generator models into the Vivado IDE

▪ Design a processor-controllable interface using System Generator
for DSP

▪ Generate IPs from C-based design sources using the Vitis HLS
tool for use in the System Generator environment

▪ Create and simulate designs using Model Composer

Course Outline
Day 1

▪ Introduction to System Generator

▪ Simulink Software Basics

▪ Lab 1: Using the Simulink Software

▪ Basic Xilinx Design Capture

▪ Demo: System Generator Gateway Blocks

▪ Lab 2: Getting Started with Xilinx System Generator

▪ Signal Routing

▪ Lab 3: Signal Routing

▪ Implementing System Control

▪ Lab 4: Implementing System Control

Day 2

▪ Multi-Rate Systems

▪ Lab 5: Designing a MAC-Based FIR

▪ Filter Design

▪ Lab 6: Designing a FIR Filter Using the FIR Compiler Block

▪ System Generator, Vivado Design Suite, and Vitis HLS
Integration

▪ Lab 7: System Generator and Vivado IDE Integration

▪ DSP Platforms

▪ Lab 8: System Generator and Vitis HLS Tool Integration

▪ Lab 9: AXI4-Lite Interface Synthesis

▪ Introduction to Model Composer

▪ Demo: Introduction to Model Composer

▪ [OPTIONAL]: Importing C/C++ Code to Model Composer

▪ [OPTIONAL]: Automatic Code Generation Using Model Composer

▪ [OPTIONAL]: Lab 10: Model Composer and Vivado IDE
Integration

Lab Descriptions
▪ Lab 1: Using the Simulink Software – Learn how to use the

toolbox blocks in the Simulink software and design a system.
Understand the effect sampling rate.

▪ Lab 2: Getting Started with Xilinx System Generator – Illustrates
a DSP48-based design. Perform hardware co-simulation
verification targeting a Xilinx evaluation board.

▪ Lab 3: Signal Routing – Design padding and unpadding logic by
using signal routing blocks.

▪ Lab 4: Implementing System Control – Design an address
generator circuit by using blocks and Mcode.

▪ Lab 5: Designing a MAC-Based FIR – Using a bottom-up
approach, design a MAC-based bandpass FIR filter and verify
through hardware co-simulation by using a Xilinx evaluation
board.

▪ Lab 6: Designing a FIR Filter Using the FIR Compiler Block –
Design a bandpass FIR filter by using the FIR Compiler block to
demonstrate increased productivity. Verify the design through
hardware co-simulation by using a Xilinx evaluation board.

▪ Lab 7: System Generator and Vivado IDE Integration – Embed
System Generator models into the Vivado IDE.

▪ Lab 8: System Generator and Vitis HLS Tool Integration –
Generate IP from a C-based design to use with System
Generator.

© 2021 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DSP Design Using System Generator

DSP 3

DSP-SYSGEN (v1.0) Course Specification

DSP-SYSGEN (v1.0) updated June 2021 www.xilinx.com
Course Specification 1-800-255-7778

▪ Lab 9: AXI4-Lite Interface Synthesis – Package a System
Generator for DSP design with an AXI4-Lite interface and
integrate this packaged IP into a Zynq UltraScale+ MPSoC
processor system. Then create and debug the application project
using the Vitis IDE.

▪ Lab 10: Model Composer and Vivado IDE Integration - Embed a
Model Composer model into the Vivado IDE.

Register Today
Visit the Xilinx Customer Training Center to view schedules and
register online.

https://xilinxprod-catalog.netexam.com/Search?searchText=DSP%20Design%20Using%20System%20Generator

