C-based Design: High-Level Synthesis with the Vivado HLx Tool

DSP 3

Course Specification

Course Outline

Day 1
- Introduction to High-Level Synthesis
 Overview of the High-Level Synthesis (HLS), Vivado HLS tool flow, and the verification advantage. (Lecture)
- Vivado HLS Tool Flow
 Explore the basics of high-level synthesis and the Vivado HLS tool. [Lecture, Demo, Lab]
- Design Exploration with Directives
 Explore different optimization techniques that can improve the design performance. (Lecture)
- Vivado HLS Tool Command Line Interface
 Describes the Vivado HLS tool flow in command prompt mode. (Lecture, Lab)
- Introduction to HLS UltraFast Design Methodology
 Introduces the methodology guidelines covered in this course and the HLS UltraFast Design Methodology steps. (Lecture)
- Introduction to I/O Interfaces
 Explains interfaces such as block-level and port-level protocols abstracted by the Vivado HLS tool from the C design. (Lecture)
- Block-Level I/O Protocols
 Explains the different types of block-level protocols abstracted by the Vivado HLS tool. (Lecture, Lab)
- Port-Level I/O Protocols
 Describes the port-level interface protocols abstracted by the Vivado HLS tool from the C design. (Lecture, Demo, Lab)
- Port-Level I/O Protocols: AXI4 interfaces
 Explains the different AXI interfaces (such as AXI4-Master, AXI4-Lite (Slave), and AXI4-Stream) supported by the Vivado HLS tool. (Lecture, Demo)
- Port-Level I/O Protocols: Memory Interfaces
 Describes the memory interface protocol-level ports (such as block RAM, FIFO) abstracted by the Vivado HLS tool from the C design. (Lecture, Lab)
- Port-Level I/O Protocols: Bus Protocol
 Explains the bus protocol supported by the Vivado HLS tool. (Lecture)
- Pipeline for Performance: PIPELINE
 Describes the PIPELINE directive for improving the throughput of a design. (Lecture, Demo, Lab)

Day 2
- Pipeline for Performance: DATAFLOW
 Describes the DATAFLOW directive for improving the throughput of a design by pipelining the functions to execute as soon as possible. (Lecture, Lab)
- Optimizing Structures for Performance
 Learn the performance limitations caused by arrays in your design. You will also learn some optimization techniques to handle arrays for improving performance. (Lecture, Demo, Lab)
- Data Pack and Data Dependencies
 Learn how to use DATA_PACK and DEPENDENCE directives to overcome the limitations caused by structures and loops in the design. (Lecture)
- Vivado HLS Tool Default Behavior: Latency
 Describes the default behavior of the Vivado HLS tool on latency and throughput. (Lecture)
C-based Design: High-Level Synthesis with the Vivado HLx Tool
DSP 3

DSP-HLS (v1.0) Course Specification

- Reducing Latency
 Describes how to optimize the C design to improve latency. {Lecture}

- Improving Area and Resource Utilization
 Describes different methods for improving resource utilization and explains how some of the directives have impact on the area utilization. {Lecture, Lab}

- HLx Design Flow – System Integration
 Describes the traditional RTL flow versus the Vivado HLx design flow. {Lecture, Lab}

- Vivado HLS Tool C Libraries: Arbitrary Precision
 Describes the Vivado HLS tool support for the C/C++ languages, as well as arbitrary precision data types. {Lecture, Lab}

- Hardware Modeling
 Explains hardware modeling with streaming data types and shift register implementation using the ap_shift_reg class. {Lecture}

- Using Pointers in the Vivado HLS Tool
 Explains the use of pointers in the design and workarounds for some of the limitations. {Lecture}

Register Today
Visit the Xilinx Customer Training Center to view schedules and register online.

© 2020 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

DSP-HLS (v1.0) updated August 2020 www.xilinx.com 1-800-265-7778