C-based Design: High-Level Synthesis with the Vivado HLx Tool

DSP 3

Course Specification

- Perform system-level integration of IP generated by the Vivado HLS tool
- Describe how to use OpenCV functions in the Vivado HLS tool

Course Outline

Day 1
- **Introduction to High-Level Synthesis**
 Overview of the High-Level Synthesis (HLS) Vivado HLS tool flow, and the verification advantage. (Lecture)
- **Vivado HLS Tool Flow**
 Explore the basics of high-level synthesis and the Vivado HLS tool. (Lecture, Demo, Lab)
- **Design Exploration with Directives**
 Explore different optimization techniques that can improve the design performance. (Lecture)
- **Vivado HLS Tool Command Line Interface**
 Describes the Vivado HLS tool flow in command prompt mode. (Lab)
- **Introduction to HLS UltraFast Design Methodology**
 Introduces the methodology guidelines covered in this course and the HLS UltraFast Design Methodology steps. (Lecture)
- **Introduction to I/O Interfaces**
 Explains interfaces such as block-level and port-level protocols abstracted by the Vivado HLS tool from the C design. (Lecture)
- **Block-Level I/O Protocols**
 Explains the different types of block-level protocols abstracted by the Vivado HLS tool. (Lab)
- **Port-Level I/O Protocols**
 Describes the port-level interface protocols abstracted by the Vivado HLS tool from the C design. (Lab)
- **Port-Level I/O Protocols: AXI4 Interfaces**
 Explains the different AXI interfaces (such as AXI4-Master, AXI4-Lite (Slave), and AXI4-Stream) supported by the Vivado HLS tool. (Demo)
- **Port-Level I/O Protocols: Memory Interfaces**
 Describes the memory interface port-level protocols (such as block RAM, FIFO) abstracted by the Vivado HLS tool from the C design. (Lab)
- **Port-Level I/O Protocols: Bus Protocol**
 Explains the bus protocol supported by the Vivado HLS tool. (Lab)
- **Pipeline for Performance: PIPELINE**
 Describes the PIPELINE directive for improving the throughput of a design. (Lab)

Day 2
- **Pipeline for Performance: DATAFLOW**
 Describes the DATAFLOW directive for improving the throughput of a design by pipelining the functions to execute as soon as possible. (Lab)
- **Optimizing Structures for Performance**
 Learn the performance limitations caused by arrays in your design. You will also learn some optimization techniques to handle arrays for improving performance. (Lab)
• Data Pack and Data Dependencies
 Learn how to use DATA_PACK and DEPENDENCE directives to overcome the limitations caused by structures and loops in the design. {Lecture}

• Vivado HLS Tool Default Behavior: Latency
 Describes the default behavior of the Vivado HLS tool on latency and throughput. {Lecture}

• Reducing Latency
 Describes how to optimize the C design to improve latency. {Lecture}

• Improving Area and Resource Utilization
 Describes different methods for improving resource utilization and explains how some of the directives have impact on the area utilization. {Lecture, Lab}

• HLx Design Flow – System Integration
 Describes the traditional RTL flow versus the Vivado HLx design flow. {Lecture, Lab}

• Vivado HLS Tool C Libraries: Arbitrary Precision
 Describes the Vivado HLS tool support for the C/C++ languages, as well as arbitrary precision data types. {Lecture, Lab}

• Hardware Modeling
 Explains hardware modeling with streaming data types and shift register implementation using the ap_shift_reg class. {Lecture}

• Accelerating OpenCV Applications Using Vivado HLS Video Libraries
 Explains the OpenCV design flow and the Vivado HLS tool support. {Lecture, Lab}

• Using Pointers in the Vivado HLS Tool
 Explains the use of pointers in the design and workarounds for some of the limitations. {Lecture}

Register Today
Visit the Xilinx Customer Training Center to view schedules and register online.