Course Description

This course provides software developers with an overview of the capabilities and support for the Zynq UltraScale+™ MPSoC family from a software development perspective.

The emphasis is on:
- Reviewing the catalog of OS implementation options, including hypervisors, and various Linux implementations
- Booting and configuring a system
- Applying various power management techniques for the Zynq UltraScale+ MPSoC family

Level – Embedded Software 3

Course Duration – 2 days

Price –

Course Part Number – EMBD-ZUPSW

Who Should Attend? – Software developers interested in understanding the OS and other capabilities of the Zynq UltraScale+ MPSoC device.

Prerequisites
- General understanding of embedded and real-time operating systems
- Familiarity with issues related to implementing a complex embedded system

Software Tools
- Vivado® Design Suite 2019.1
 - May require special Zynq UltraScale+ MPSoC family license
- Hardware emulation environment:
 - VirtualBox
 - QEMU
 - Ubuntu desktop
 - PetaLinux

Hardware
- Host computer for running the above software*

* This course focuses on the Zynq UltraScale+ MPSoC architecture. Check with your local Authorized Training Provider for the specifics of the in-class lab environment or other customizations. This version of the class does not use a physical board, but rather a local emulation environment and the Vivado Design Suite.

After completing this comprehensive training, you will have the necessary skills to:
- Distinguish between asymmetric multi-processing (AMP) and symmetric multi-processing (SMP) environments
- Identify situations when the ARM® TrustZone technology and/or a hypervisor should be used
- Effectively use power management strategies and leverage the capabilities of the platform management unit (PMU)
- Define the boot sequences appropriate to the needs of the system
- Define the underlying implementation of the application processing unit (APU) and real-time processing unit (RPU) to make best use of their capabilities

Course Outline

Day 1

- **Application Processing Unit**
 - Introduction to the members of the APU, specifically the Cortex™-A53 processor and how the cluster is configured and managed. (Lecture, Lab)
- **Real-Time Processing Unit**
 - Introduction to the various elements within the RPU and different modes of configuration. (Lecture, Demo, Lab)
- **ARM TrustZone Technology**
 - Illustrates the use of the ARM® TrustZone technology. (Lecture)
- **QEMU**
 - Introduction to the Quick Emulator, which is the tool used to run software for the Zynq UltraScale+ MPSoC device when hardware is not available. (Lecture, Demo, Lab)
- **HW-SW Virtualization**
 - Covers the hardware and software elements of virtualization. The lab demonstrates how hypervisors can be used. (Lecture, Demo, Lab)
- **MultiProcessor Software Architecture**
 - Introduces several potential architectures and illustrate the strengths of each. (Lecture)
- **Hypervisors**
 - Description of generic hypervisors and discussion of some of the details of implementing a hypervisor using Xen. (Lecture, Demo, Lab) (Pairs with OpenAMP, but not SMP)
- **OpenAMP**
 - Introduction to the concept of OpenAMP. (Lecture, Lab) (Pairs with the Xen Hypervisor, but not SMP)
- **Linux**
 - Discussion and examples showing how to configure Linux to manage multiple processors. (Lecture, Demo)

Day 2

- **Yocto**
 - Compares and contrasts the kernel building methods between a "pure" Yocto build and the PetaLinux build (which uses Yocto "under-the-hood"). (Lecture, Demo, Lab)
- **Open Source Library (Linux)**
 - Introduction to open-source Linux and the effort and risk-reducing PetaLinux tools. (Lecture, Demo, Lab)
- **FreeRTOS**
 - Overview of FreeRTOS with examples of how it can be used. (Lecture, Demo, Lab)
- **Software Stack**
 - Introduction to what a software stack is and a number of stacks used with the Zynq UltraScale+ MPSoC. (Lecture, Demo)
- **PMU**
 - Introduction to the concepts of power requirements in embedded systems and the Zynq UltraScale+ MPSoC. (Lecture, Lab)
- **Power Management**
 - Overview of the PMU and the power-saving features of the device. (Lecture, Lab)
Booting
How to implement the embedded system, including the boot process and boot image creation. Also how to detect a failed boot. (Lecture, Lab)

First Stage Boot Loader
Introduction to the FSBL, its importance, and how it can be implemented and debugged. (Lecture, Demo, Lab)

Register Today
Visit the Xilinx Customer Training Center to view schedules and register online.