C-based Design: High-Level Synthesis with the Vivado HLx Tool

DSP 3

Course Specification

- **Vivado HLS Tool Flow**
 Explore the basics of high-level synthesis and the Vivado HLS tool. (Lecture, Demo, Lab)

- **Design Exploration with Directives**
 Explore different optimization techniques that can improve the design performance. (Lecture)

- **Vivado HLS Tool Command Line Interface**
 Describes the Vivado HLS tool flow in command prompt mode. (Lecture, Lab)

- **Introduction to HLS UltraFast Design Methodology**
 Introduces the methodology guidelines covered in this course and the HLS UltraFast Design Methodology steps. (Lecture)

- **Introduction to I/O Interfaces**
 Explains interfaces such as block-level and port-level protocols abstracted by the Vivado HLS tool from the C design. (Lecture)

- **Block-Level I/O Protocols**
 Explains the different types of block-level protocols abstracted by the Vivado HLS tool. (Lecture, Lab)

- **Port-Level I/O Protocols**
 Describes the port-level interface protocols abstracted by the Vivado HLS tool from the C design. (Lecture, Demo, Lab)

- **Port-Level I/O Protocols: AXI4 Interfaces**
 Explains the different AXI interfaces (such as AXI4-Master, AXI4-Lite (Slave) and AXI4-Stream) supported by the Vivado HLS tool. (Lecture, Demo)

- **Port-Level I/O Protocols: Memory Interfaces**
 Describes the Memory Interface port-level protocols (such as BRAM, FIFO) abstracted by the Vivado HLS tool from the C design. (Lecture, Lab)

- **Port-Level I/O Protocols: Bus Protocol**
 Explains the bus protocol supported by the Vivado HLS tool. (Lecture)

- **Pipeline for Performance: PIPELINE**
 Describes the PIPELINE directive for improving the throughput of a design. (Lecture, Demo, Lab)

Day 2

- **Pipeline for Performance: DATAFLOW**
 Describes the DATAFLOW directive for improving the throughput of a design by pipelining the functions to executes as soon as possible. (Lecture, Lab)

- **Optimizing Structures for Performance**
 Learn the performance limitations caused by structures and loops in the design. You will also learn some optimization techniques to handle arrays for improving performance. (Lecture, Demo, Lab)

- **Data Pack and Data Dependencies**
 Learn how to use DATA_PACK and DEPENDENCE directives to overcome the limitations caused by structures and loops in the design. (Lecture)

- **Vivado HLS Tool Default Behavior: Latency**
 Describes the default behavior of the Vivado HLS tool on latency and throughput. (Lecture)

- **Reducing Latency**
 Describes how to optimize the C design to improve latency. (Lecture)
C-based Design: High-Level Synthesis with the Vivado HLx Tool

DSP 3

Course Specification

DSP-HLS (v1.0)

- Improving Area and Resource Utilization
 Describes different methods for improving resource utilization and explains how some of the directives have impact on the area utilization. (Lecture, Lab)

- HLx Design Flow – System Integration
 Describes the traditional RTL flow versus the Vivado HLx design flow. (Lecture, Lab)

- Vivado HLS Tool C Libraries: Arbitrary Precision
 Describes the Vivado HLS tool support for the C/C++ languages, as well as arbitrary precision data types. (Lecture, Lab)

- Hardware Modeling
 Explains hardware modeling with streaming data types and shift register implementation using the ap_shift_reg class. (Lecture)

- Accelerating OpenCV Applications Using Vivado HLS Video Libraries
 Explains the OpenCV design flow and the Vivado HLS tool support. (Lecture, Lab)

- Using Pointers in the Vivado HLS Tool
 Explains the use of pointers in the design and workarounds for some of the limitations. (Lecture)

Register Today
Visit the Xilinx Customer Training Center to view schedules and register online.